

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Improved Determination of Barrier Heights from Self-consistent Harmonic Approximation

G. Dellepiane^a; L. Piseri^a; P. Bosi^a

^a Istituto di Chimica delle Macromolecole del CNR, Milano, Italy

To cite this Article Dellepiane, G. , Piseri, L. and Bosi, P.(1976) 'Improved Determination of Barrier Heights from Self-consistent Harmonic Approximation', *Spectroscopy Letters*, 9: 12, 881 — 884

To link to this Article: DOI: 10.1080/00387017608067480

URL: <http://dx.doi.org/10.1080/00387017608067480>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

IMPROVED DETERMINATION OF BARRIER HEIGHTS FROM SELF-CONSISTENT
HARMONIC APPROXIMATION

Key Words: Torsional barrier heights

C.Dellepiane, L.Piseri and P.Bosi

Istituto di Chimica delle Macromolecole del CNR, Via Alfonso Corti, 12
20133 Milano (Italy)

In a preceding paper ¹ we have given an explicit formula for calculating the barrier height V_3 for one-top molecules as a function of the experimental torsional frequency and of geometry (see formula 20). We point out, however, that the actual expression for V_3 is given in terms of the self-consistent harmonic torsional frequency ω^c as follows ¹:

$$V_3 = (\omega^c / 9F) \exp(9F / 2\omega^c) \quad (1)$$

Since the torsional frequencies $\omega_{o \rightarrow 1}$ and $\omega_{o \rightarrow 2}$ corrected to second order by using the self-consistent harmonic approximation are given by ²:

$$\omega_{o \rightarrow 1} = \omega^c - \frac{81F^2}{32\omega^c} \quad (2)$$

$$\omega_{o \rightarrow 2} = 2\omega^c - \frac{9F}{4} - \frac{1053}{64} \frac{F^2}{\omega^c} \quad (3)$$

one can derive, with a very good approximation, ω^c as a function of geometry, $\omega_{o \rightarrow 1}$ and $\omega_{o \rightarrow 2}$ respectively:

$$\omega^c \approx \omega_{o \rightarrow 1} + \frac{81F^2}{32\omega_{o \rightarrow 1}} \quad (4)$$

$$\omega_2^c \simeq \frac{1}{2} (\omega_{o \rightarrow 2} + \frac{9F}{4}) + \frac{1053F^2}{64(\omega_{o \rightarrow 2} + 9F/4)} \quad (5)$$

In Table 1 the values of $\omega_{o \rightarrow 1}$ and $\omega_{o \rightarrow 2}$ obtained from eqs. (2) and (3) and those from the solution of the Mathieu's equation are reported. The two sets of data show generally a very good agreement. For the last four medium barrier height molecules, the values of $\omega_{o \rightarrow 2}$ from eq. (3) shows a better agreement with the E-E transitions.

TABLE 1

Comparison between $\omega_{o \rightarrow 1}$ and $\omega_{o \rightarrow 2}$ from eqs. (2) and (3) and those from Mathieu's equation

Molecule	F ^a	ω_c^a	eqs. (2-3)		Mathieu
CH ₃ CH ₂ Cl	6.067	251.27	$\omega_{o \rightarrow 1}$	250.9	250.8
			$\omega_{o \rightarrow 2}$	486.48	485.9
CH ₃ CH ₂ Br	5.895	247.78		247.42	247.4
				479.99	479.5
CH ₃ CH ₂ I	5.770	228.88		228.51	228.4
				442.38	441.7
CH ₃ SiH ₃	8.217	183.69		182.76	Av. 182.6
				342.84	A 332.6
					E 341.9
CH ₃ GeH ₃	8.106	158.40		157.35	Av. 157.1
				291.74	A 275.7
					E 291.4
CF ₃ SiH ₃	5.530	142.43		141.89	Av. 141.7
				268.88	A 265.2
					E 267.9
CH ₃ NH ₂	15.488	273.21		270.99	Av. 270.6
				497.13	A 458.6
					E 498.2

(a) From ref. 1. All values are in cm^{-1}

TABLE 2
Comparison between the barrier heights evaluated from ω_1^c , ω_2^c and those from microwave

Molecule	F	ω_{O+1}^a	ω_{O+2}^a	ω_1^c	ω_2^c	$V_3(\omega_1^c)$	$V_3(\omega_2^c)$	$V_3(MW)$
CH_3CH_2Cl	6.067	250.8	485.9	251.17	250.99	1288	1286	1289
CH_3CH_2Br	5.895	247.4	479.5	247.75	247.54	1288	1286	1288
CH_3CH_2I	5.770	228.4	441.7	228.77	228.55	1129	1127	1130
CH_3SiH_3	8.217	Av 182.55	A 332.6 E 341.9	183.49 E 183.28	A 178.71 E 183.28	557	A 531 Av 543 E 556	558
CH_3GeH_3	8.106	Av 157.1	A 275.7 E 291.4	158.16 E 158.31	A 150.65 E 158.31	432	A 396 Av 414 E 433	433
CF_3SiH_3	5.530	Av 141.7	A 265.2 E 267.9	142.25 E 141.97	A 140.63 E 141.97	484	A 474 Av 478 E 483	485
CH_3NH_2	15.488	Av 270.6	A 458.6 E 498.2	272.84 E 273.93	A 254.72 E 273.93	690	A 612 Av 653 E 694	691

a From solution of Mathieu's eq.

We wish to show that the values of V_3 evaluated from eqs. (1) and (4) are in better agreement with the MW data than those obtained in ref. 1 where the crude approximation $\omega^c \approx \omega_{0+1}$ was assumed. Moreover we would like to show that for those molecules for which the fundamental torsional frequency is silent but the first overtone observed, the barrier heights can be evaluated according to eqs. (1) and (5) of this paper. The results are collected in Table 2.

As far as ω_{0+1} is concerned, a comparison between the values of V_3 reported in columns 7 and 9 of Table 2 shows that the procedure here suggested gives a better approximation than the one proposed in ref. 1. Regarding ω_{0+2} , the values of V_3 (column 8) derived from ω_2^c are in very good agreement with those from MW for the first three molecules. When the splittings of the A and E levels of the second excited torsional state are not negligible, as for the last four molecules in Table 2, the agreement with MW data is better for the E+E transitions, as expected from the results reported in Table 1. Nevertheless, also for these molecules the averaged V_3 value can be considered reasonable.

REFERENCES

1. G. Dellepiane and L. Piseri, *J. Mol. Spectry*, **59**, 209 (1976)
2. L. Piseri, G. Dellepiane and P. Bosi, submitted manuscript.

Received: 10-22-76
Accepted: 11-5-76